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Abstract-The buckling of a model imperfection-sensitive structure is studied, by a variety of techniques, for
various kinds of deterministic and stochastic initial imperfections. The structure considered is an infinitely long
column on a"softening" nonlinear elastic foundation. The techniques used are perturbation expansions (including
the "two-time" variety), equivalent linearization and truncated hierarchy approximations; in all cases, asymptotic
results are sought for small imperfection magnitudes, and the effects of the various kinds of imperfections are
compared.

INTRODUCTION

IN THIS paper an imperfection-sensitive model structure will be studied by several tech­
niques for various kinds of initial imperfections. The structure considered is an infinitely
long uniform column resting on a "softening" nonlinear elastic foundation; the imperfec­
tions will be deterministic and stochastic initial displacements. Two types of deterministic
initial displacements will be considered: purely harmonic deflections in the shape of the
buckling mode of the perfect column, and localized dimples that decay exponentially. The
stochastic initial displacements will be assumed to be stationary, random functions of
position along the column, with multivariate Gaussian joint probability densities of the
values at arbitrary collections of position coordinates. In all cases, the analyses will be
aimed at finding results that are asymptotically valid for small imperfection magnitudes.

Earlier work on the same model with random imperfections is contained in [1], and the
column with harmonic imperfections could be handled as a special case of Koiter's general
theory [2]. The main purpose of the present paper, however, is to display and discuss a
variety of techniques that can be brought to bear on problems of the types considered.
These methods include: several kinds of perturbation expansions, equivalent linearization,
"two-timing" expansions and truncated hierarchy approximations. An additional purpose
is to provide a comparison of the relative effects of the different types of imperfections
considered.

t This work was supported in part by the National Aeronautics and Space Administration under Grant
NGL 22-007-012, and by the Division of Engineering and Applied Physics, Harvard University. Acknowledgment
is also made to National Science Foundation Grants GP-9453 (in support of the first author at Rensselaer
Polytechnic Institute) and GP-9335 (in support of the second author at California Institute of Technology during
the Spring of 1969).
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DIFFERENTIAL EQUATION

The structure considered is an infinitely long column having bending stiffness Fi
subjected to an axial load P, and restrained against lateral displacement WI X) by d

foundation that provides a restoring force-per-unit-length k j W -k3 W J In the presence of
an initial displacement Wo(X), the governing differential equation is

EI~;~+p(r:~) +k 1W-k3WJ
= ~pd:~~~o. (I)

(Nonlinear terms containing derivatives of W were dropped from this equation.) With k 1 and
k3 assumed positive, the nondimensionalization

X = (El/kd 1
/
4 x

W = (kJik J )1!2\\.

P = 2),(Elkd1l2

and the introduction of the small imperfection parameter e via

W o = e(kdk J )1/2 wo
leads to

W""+2AW"+W-W 3 = ·-2Aew~ (2)

(3)

where ( )' == d/dx( ). Only bounded solutions of (2) will be sought
The linear eigenvalue problem defined by setting H'a = 0 and dropping the cubic term

in (2) has the solutions
\ w = cos I1X

1), = ~(n2+~2)

where the origin ofthe x-coordinate is arbitrary. The lowest eigenvalue is Ie = I, correspond­
ing to n = 1.

The solution of the nonlinear, nonhomogeneous equation (2) would provide a relation
between the nondimensionalload A, the imperfection parameter e and the nondimensional
displacement w. The buckling load Aof the imperfect, nonlinear structure would then be
defined as the maximum value reached by A on that branch of the solution that emanates
from ), = O. This is illustrated by Fig. 1, which shows, qualitatively, the expected relations

LINEAR THEORY, E =0

DISPLACEMENT

FIG. L Variation of ), with displacement
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between A and an appropriate scalar measure of the displacement for the three cases (i)
linear theory and I; = 0, (ii) nonlinear theory and I; = 0, and (iii) nonlinear theory and

e *O.

HARMONIC IMPERFECTION

Perturbation expansion in displacement

With Wo = cos x, consider A to be prescribed (between 0 and 1), and write

w = r/ cos x+v(x) (4)

where the average value of v cos x vanishes. (We can write this orthogonality requirement as
<v cos x) = 0). Note that for any w, this prescription determines YJ and v unambiguously.
We seek a relation between A, I; and YJ; let us regard v and AI; as functions ofYJ, expanded in
the form

(5)

(6)

This approach is related, in spirit, to that of Koiter's general theory [2J, as well as to
Thompson's recent work [3J on discrete systems.

Substituting (5) and (6) into the differential equation (2), and equating to zero the
coefficients of successive powers of YJ gives:

0= 2B 1 coSX-2(l-A)COSX

L(V2) = 2B2cos X

L(V3) = 2B3 cosx+cos3x = 2B3cosx+icosx+icos3x

L(V4) = 2B4 cosx+3v2 coS2
X

L(vs) = 2Bs cos x + 3v3 cos2
X + 3v~ cos x

etc.

where

L( ) == ( )"" + 2A( )" + ( ) (7)

Note that the prescribed orthogonality between v and cos x implies, via integration by
parts, that <L(vn) cos x) = 0; hence the coefficients of cos x in the right-hand side of these
equations must vanish. If, in addition, we insist that Vn be analytic and bounded, we find
that, for ). < 1,

Bn = Vn = 0 for n even

and

{

B3 = -i
cos 3x

v3 = 8(41-9A)
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(X)

(l) )

(10)

(1 J )

and so on, The relation (6) governing the loading parameter Ie, the displacement measure Yf
and the imperfection size £, can be determined in this way as

AC = (1 - A)n, - ~n,3 _ .' __.3 .n,5 _ .. J.n,7 __~ +
8 64(41-9A) 64(41-9),)2 ....

Retention ofjust the first two terms on the right of (8), and maximizing Awith respect to
n, gIves

(1- }.)312 = 9};
4,/2

as an approximate relation between the buckling load;: of the imperfect structure and the
imperfection £,

Asymptotically, for £ -+ 0,

A~ 1- (452) 2/3

The rigorous determination of additional terms in an asymptotic development of ;: in
powers of £ requires that more than two terms in the right-hand side of (8) be retained.
Nevertheless, the evident smallness of these additional terms implies that the 1-£ relation (9)
found from just two terms is accurate over a larger range of £ than is the asymptotic result
(10).

Perturbation expansion in a load parameter
A more traditional kind of perturbation procedure (used, for example, in [4]) can be

pursued by letting A = 1- 1//2 and using <5 as an expansion parameter. The differential
equation becomes

with 11'0 = cos x. Now let
W = 1X<5 cos x + u

where (u cos x) = 0, and write

AC = L <5
nA n ·

n:::::: 1

We regard IX as fixed, and, by substitution of(12) and (13) into (11) we get

0= 2A I cos x

2'(U2) = 2A 2 cos x

2'(u3) = (2A 3_1X+
3:

3
) cosx+~lCOS3X

2'(u4 ) = 2A4 cos X+ u~ + 31X2
U 2 cos 2 x

2'(u s) = u~ + 3a2 cos2 x U3 + 31Xu~ cos X+ 2A s cos x

etc.

(12)

(13)
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where
2( ) = ( )"It +2( )" +( ). (14)

Then, suppressing cos x in the right-hand sides and in Un gives An = Un = 0 for n even, and

and so on. It can thus be shown that (12) gives

If we reintroduce 1] == iXb, this gives

(15)

This result is not inconsistent with that given by (8). If, in equation (8), Pc is replaced by
1- 15 2 /2, and the various terms on the right-hand side of (8) are expanded in powers of 15,
equation (15) would evidently be obtained. It would appear, however, that (8) is inherently
a more efficient expansion which, for a given number of terms, is more accurate than (15)
over a large range of A.

Equivalent linearization

This method (used in [1]) replaces the term w3 in (2) by ,2W ; the solution of (2) for w is
then

w = 1] cos x

where

lAs
1] = 2'2(I-Pc)-,

(16)

The "best" value of, is then assumed to be given by the requirement that <w4) = ,2<W2),
which gives

(17)

Eliminating ,2 from (16) and (17) gives

(18)

which, as far as it goes, agrees with the earlier results.
While the method of equivalent linearization thus gives an answer that is asymptotically

exact, there is no obvious way to improve it systematically.



1346 JOHN C. AMAZIGO, BERNARD BUDlANSK Y and GEORGE F. CARKl!.R

DIMPLE IMPERFECTION

Equivalent linearization

Now suppose that the imperfection shape wo(x) is continuously differentiable and
satisfies the exponential-decay condition

IWo(x)1 < Ale-~lxl (M, rx. > 0). (9)

Again, write w3 = r 2w in the differential equation (11). Taking the Fourier transform of this
equation, according to the definition

"
.1lw) 0=: f f(x)eiWX dx

gives

Then, taking the inverse transform gives

(20)

Let us assume, tentatively, r < J for sufficiently small J; it is shown in the Appendix that,
under the hypothesis (19), an asymptotic approximation to w(x) that is uniformly valid over
the infinite range of x, for small J, is given by

w(x) ~ .._._l:~_~:c~C"IXI12J;j2:::,'[wo( l)e" ix +w( __ l)eix].
.., /J2 _r2
-"

We will now impose the requirement

f~if w
4
dx = ,2 J'y w

2
dx

in order to get the "best" r, and use (21) to calculate the required integrals.
Thus

and

and so

(2 J)

(22)

(23)
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It is convenient to regard 1" as a measure of the magnitude of the displacement. Thus, the A,
1", e relation given in (23) may be written as

(1-A)1"2 -t1"4 = 136A2e21 wo(1)12. (24)

Maximizing Awith respect to 1" then gives

i = (1- A)1/2 =~
J2

(25)

as the value of 1" at buckling-and this verifies the initial assumption 1" < b. The buckling
load;: then follows from (24) as

(26)

Asymptotically, for sufficiently small e,

(27)

but the studies for harmonic imperfections permit us to hope that (26) may be accurate for a
larger range of ethan (27). However, it must be admitted that this is no more than wishful
thinking. In fact, there is no evident reason to conclude that even (27), obtained by the
method of equivalent linearization, is asymptotically exact.

"Two-timing" perturbation expansion

The approximation (21) found for the deflection by the method of equivalent lineariza­
tion suggests the possibility of a perturbation expansion in powers of b that involves more
than one length coordinate as independent variable. (The designation "two-timing" for
such an approach stems from its use in initial value problems wherein time is the independent
variable [5,6 ]).

We introduce the variable ( == bX, and consider w to be a function of both ( and x.
Then

dw _ aw "aw
dx - a'x +uaz

d 2w a2w a2w a2w
dx2 = ax2 +2baxa( +b

2
a(2

d3 w a3w a2w a3w a3w
dx3 = ax3 +3bax2a( +3b

2
axa(2 +b

3
a(2

and the differential equation (11) becomes

(28)

(29)

(30)

Now we seek a bounded solution of the form

(32)
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that is consistent with

(33 )

Guided, again, by the form of (21) we shall admit the possibility of discontinuities in the
un's or their derivatives at x = 0 and ( = 0; but w, dw/dx, d 2 w/dx 2 and d 3 w/dx 3 must be
continuous (since these correspond, physically, to deflection, slope, moment and shear.
respectively). If these continuity conditions are written in terms of the expansion (32),
and then asserted for the coefficient of bn in the resultant expression, it is found that the
following combination of functions must be continuous in , and x:

(34)

(n = 1,2,3, ...).

(35)

(36)

(37)

(It is understood here that Uk == 0 for k ;;; 0.)
Substitution of (32) into (31), and insisting that the coefficient of bn vanish, provides the

following three differential equations for n = 1, 2, 3 :

(40)

The real-valued solution of (38) is

where n means the complex conjugate of ( ), and 11 (a function of x but not of 0 is a
bounded, real-valued, particular solution of (38). But the boundedness of w (for <5 > 0)

implies hi == O. Thus

(41)

Similarly,

(42)

and
(43)
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where

and

(n = 1,2,3) (44)

(45)

Let us stipulate that f.(x) have a bounded Fourier transform !.(w), but admit the
possibility of jumps [f,,(0)] == f.(O+) - f,,(0-), [f~(O)J == f~(O+)-f~(O-), etc. Then

f,
- ( ) = 2A.wzwo(w) + [f~'(O)] - iw[f~(O)] _(Wz - 2)[f~(0)] + iw(wZ- 2) [f,,(O)J (46)
.w (wZ-1f

The absence of a double pole at w = 1 requires that

[f~'(O)J- i[f~(O)J + [f~(O)J - i[f.(O)J = - 2A.woO)

-i[f~(0)J-2[f~(0)J+i[f.(0)J= -A.(4wo(l) +2w~(l».

(47)

(48)

(49)

These equalities would also prevent a double pole at w = -1. [Note that the analyticity of
wo(w) in the neighborhood of w = ±1 is assured by the assumption (19) concerning the
exponential decay of wo.J Now, from the continuity requirements (34-37), we must have, for
n = 1,

[fl(O)] = -[al(O)J-[al(O)J

[f{(O)J = - i[al(O)] + i[al(O)J

[f;'(O)J = [at(O)J+[al(O)J

[f{"(O)J = i[al(O)]-i[al(O)J.

Hence-if we assume that wo(l) # o--the relations (47) imply that Al = 0, and equation
(48) then gives [al(O)] = o. Hencefl(x) = 0, and

where a l«() is continuous.
For n = 2, the continuity requirements (34-37) tell us that

[fz(O)J = -[az(O)J-[az(O)J

[f2(0)] = - i[az(O)] + i[az(O)J - [a'l (O)J - [a'l (O)J

[f2'(0)] = [az(O)] + [az(O)J - 2i[a~ (0)] + 2i[a'l (O)J

[ft(O)] = i[az(O)] - i[az(O)] +3[a'1(0)] +3[a'l(O)].

It then follows from equation (47) for n = 2 that

[a'l(O)] = -~Zwo( -1).

(50)

(51 )

(52)

(Also, from (48), [az(O)J = (i/2)iA z[wo( - 1) + tr'~( -1)], but this will not be used.) Finally, we
will use (45) to deduce some more information about a l«). The right-hand side of (45) is

a~e3ix+ale-3ix+[3aial-al +4a'{]eix+[3alai-al +4a'iJe- ix
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The vanishing of the "secular" terms in eix and e i.x is necessary if g is to be devoid of
contributions like xeix and xe- ix that, we have agreed, must not appea~. Hence (lIE) must
satisfy the differential equation

(53)

for 1'1 > 0, together with the jump relation (52) at ( = 0, and a boundedness condition al

infinity. Multiplying (53) by a;, and adding the result to its conjugate, gives

4(a'l a'd' (alai)' +l(afaf)' = 0. (54)

Integrating from 0+ to 00, assuming al(oo) = a;(oo) = 0, gives

(55)

But note that if a l(() satisfies (53) in (0 + ,XJ), it is also the solution in (0 -, - CfJ), since a I (()

is continuous, Hence,

(56)

with the use of (52). Thus

(57)

To sum up the state of approximation that has been attained for (32) and (33), we have

{

W = i5[al(Oeix+al(Oe-ix]

AE = (52 A 2

(58~

(59)

where al(O = al(-O satisfies the differential equation (53) for 1(1 > 0, with al(O) and A 2

related by (57). If we introduce the displacement measure (J == l5la l(O)I, we have, from (57),

and so

or

(60)

The critical value (j that maximizes), in (60) is (j = J~T-=I). Substituting this into (60) then
gives the same answer (26) for Aas was found by the method ofequivalent linearization.

The corroboration of this result by the two-timing approach certainly lends confidence
in its validity, and even suggests that it may be asymptotically exact for sufficiently small E;

but it cannot be asserted that this has been established rigorously. In fact, a word of caution
must be inserted concerning the possibility ofcontinuing the present perturbation procedure
to higher degrees of approximation. It may well be-indeed, it is likely-that the uniform
validity of the expression (32) will break down unless more independently scaled space
variables are introduced. Alternatively, it may be desirable (or necessary) to "stretch" one
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or both of the presently used space variables themselves, with the amount of stretch depend­
ing on b. (See, for example, [6]). In any case, improving the presently found result by
perturbation techniques is not a trivial job.

RANDOM IMPERFECTION

Equivalent linearization

Now suppose that wo(x) in equation (11) is a stationary, zero-mean random function,
having a correlation function

Room = 1~~ 2~fL wo(x)wo(x+~)dx == <wo(x)wo(x+~»

and a power spectral density

(61)

(62)

Once again, write w3 = r 2w in the differential equation; as in Ref. [1], we then find that
the spectrum of the displacement w is

4)h2W4S00(W)
Sll(w) = [(w2_l)2+b2w2-r2f'

The correlation function Rll(~) ofw(x) is

The mean-square displacement

is therefore

(63)

We assume that the imperfection wo(x) is multivariate Gaussian. (This means that the joint
probability density P[wl>1l, wl>2), ... w~)] for the values wl>l) at Xl' wl>2) at X2' etc. is given by

{
1 n n }

exp -- I I bijwg)w~)
p= 2 i ;lj;1

(2n)"/2(a)1/2

where

bij = inverse of aij

aij = Roo(xi-x)
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and a = det aij') Then, since linear functions of multivariate Gaussian quantities are also
multivariate Gaussian, the displacements w(x) given by the linearized problem arc multI­
variate Gaussian. Hence

(64)
we get

(65)

(67)

(68)

So far the analysis of [IJ has been repeated; but now we seek an asymptotic result by
assuming <5, Li « 1, and evaluate (63) asymptotically as follows:

Li 2 = 8,1,2<:2 fa: w
4
Soo(w)dw (66)

, 0 [(W2_l)2+<52w2-3Li2J2'

Let w2 = 1+(<52_3Li2)1/2p ; then

Li 2 "V 4,1,2<:2 fW Soo(1) dp _ 2n,1,2<:2Soo(1)
"V (<52 _ 3Li2)3/2 ~ W (p2 + 1)2 - (<5 2_ 3Li2)3/2

and so

(1- ).)Ll4/3_!Ll IO / 3 = -!(2n)2/3,1,413<:4/3[Soo(1)J2/3.

Maximizing Awith respect to Ll produces the result

(1- 4)514 = 1{~)1/4[nSoo(l)J 1/24<:.

For sufficiently small G, this gives

X~ 1-1(3)-1/5[nSoo(l)J2/5<:4/5 (69)

but we may hope that (68) gives a relation between Xand G that is better for a larger range
of G.

Other methods

It would be desirable to try to check the result for random imperfections by one or more
independent approaches, But while perturbation methods were available to us in the case of
harmonic imperfections and, with two-timing, for dimples, we have been unable to concoct
a perturbation scheme for the case of random imperfections.

Another approach that has been widely used in stochastic problems is that based on the
so-called truncated-hierarchy idea. In this method (which is not well codified in any unique
way) a differential equation for the correlation function of the unknown (w in the present
case) is formulated; but it is then found (in all but the simplest problems) that such an
equation introduces one or more other kinds ofcorrelation function. Formulating equations
for these new unknowns introduces still others-and, typically, one can never catch up.
To end the process, one truncates this hierarchy of equations at some suitable stage, and
introduces plausible approximations for enough unknown functions to render the system
determinate.



Asymptotic analyses of the buckling of imperfect columns on nonlinear elastic foundations 1353

In the presently considered nonlinear problem, the method does not look very attractive
since the number ofequations needed to improve the most primitive possible approximation
appears to escalate very rapidly. It may, nevertheless, be of interest to show how the
simplest approximation works.

Let
Rlt(~) = <w(x)w(x+~» = Rlt(-~)

RlOm == <W(x)WO(X+~»

RotW = <wo(x)w(x+~» = R lO(-~)

RooW == <wo(x)wo(x+~» = Roo(-~)'

The governing differential equation can be written

(J4W (J2 W (J2W
a~iX+~)+2A a~2(X+~)+w(x+~)-w3(x+~) = -2;(e8~~x+~). (70)

Multiplying by w(x) and averaging over the infinite beam gives

R'{'~(~)+2AR'11W+Rltm-<w(x)w3(x+~» = -2AeR'10(~)' (71)

Similarly, replacing ~ by - ~ in (70), multiplying by wo(x), and averaging over x gives

R'l'~(~)+ 2AR~o(~)+ RlOW- <wo(x)w3(x - ~» = - 22eR~o(~)' (72)

We can stop here, and solve (71) and (72) for RllW and RlO(~) by making suitable
approximations for <w(x)w3(x + ~» and <wo(x)w3(x- ~». Let us do this by supposing that
the joint probability densities P[wo(x), w(x + ~)] and P[w(x), w(x + ~)] are both Gaussian.
Then [7]

<W(X)W3(X+~» = 3L\2Rlt(~)

<WO(X)W3(X-~» = 3L\2Rot(-~) = 3L\2R lOW.

Hence, (71) and (72) become

Y{Rl1(~)} - <5 2R~ t(~)- 3L\2Rll(~) = - 22eR'10W

Y{R10(~)} - <52
R'lo(~)- 3L\2RtOm = - 2AeR~oW.

(73)

(74)

Solving these equations by taking Fourier transforms [and recalling the relation (62)) gives

422e2 ro4 S (ro)
S (ro) - 00 (75)
It - [(ro 2 -1f+<52ro 2 -3L\2F

and then calculating L\2 = 2 J~ Sl1(ro) dro returns the relation (66) found earlier, by the
method of equivalent linearization. Thus, the same asymptotic results (68) and (69) also
follow.

To carry this process one logical step further would evidently require the introduction of
higher order correlations of the type

Rijkl(~' 11, 0 = <wi(x)wJ{x+~)Wk(X+I1)wz(x+,) (i,j, k, I = 0,1)

(where Wt == w) together with many more differential equations governing them, as well as
reasonable assumptions to approximate averages like

(i,j, k, I = 0, 1)
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in terms of R jjkl and Rij. We have not attempted this extension, and do not particularlY
recommend it. .

COMPARISON OF RESULTS

The asymptotic results found for various kinds of imperfections will be recapitulated
and compared.

In each case, the imperfection shape has the form

W = E(kdk3)1/2WO(X)

in terms of the nondimensional coordinate x = (kdEI)I/4X. The buckling load is
P = 2J..(Elk 1)1/2, and the relations between J.. and E are as follows for sufficiently small 1;:

(i) 11'0 = cos x:

(1 - J..f/2 .~ ~I;.
4j2

;: ~ 1- (4]-2) 2/31;
2

/3

(ii)lwol<Me-~lxl,M> O,IX > 0:

A .~ -_ ...~~I .....
J +Allvo(l)11:

;: ~ 1- jjllvo(1)!B

where

IVo(1) = fX
x

w(;xWX dx

(iii) wo(x) random, stationary, Gaussian:

(l-A)5/4 ~ t(i)1/4[nSo0(1)]I./2AI'.}
A~ 1-1(3)-1/5[nSoo(1)]2/5r4/5

where

and

(76)

(77)

(78)

Roo(~) = lim'~fL wo(iX)wo(x+~)dx
L~co 2L -I.

We expect that the first relation in each of equations (76-78) is more accurate than the
second, but with decreasing confidence in this conclusion for cases (iHiii). While we are
reasonably certain that (76) is asymptotically exact, we are somewhat less sure for case (ii),
and really not at all convinced that the results for the random imperfection are



(r < 6)

Asymptotic analyses of the buckling of imperfect columns on nonlinear elastic foundations 1355

asymptotically exact. Finally, we note that the degradations of buckling strength, as
measured by their dependence on the degree of G, are greatest for the harmonic imperfection,
less for the random imperfection, and least for the dimple.
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APPENDIX

Asymptotic evaluation ofan integral

Suppose IWo(x)1 < Me -a1x l, M > 0, rx > 0, and let

wo(w) = f'oo w(x)eiwx dx

We wish to find an asymptotic expression for

1 foo w2w (w)e- iwx dwg(x) = _ ----,,---o=-=--_=--=_~
2n _ 00 (w 2_1)2 +62w2- r 2

that is uniformly valid for all x for sufficiently small 6.
Consider first x > 0; since wo(w) is clearly analytic for IIm(w)1 < rx, the integral for g(x)

can be shifted in the complex w plane to provide the relation

_~ f- 00
-

ia1 w2wo(w)e-iwx dw
g(x) - 2 ( 2 1)2 .2 2 2 i [Residues at w 1, w2 ]

n _ 00 - iaJ W - . +u w - r

where W 1,2 ::::; ± 1-(i/2))62- r 2+0(62
) are the poles ofthe integrand in the lower halfplane,

and t)62_r2 < rx 1 < rx. With rx 1 held fixed, the integral is bounded by Ke-a'ixi (K > 0);
then, evaluating the residues yields

g(x) = 1 [w (1)+0(6)]e-{i+[{o2-t2)'/2/21+O{o2)}x
4(62_r2)1/2 0

It follows that, for x > 0,

g(x) ::::; 1 [w (l)e- iX + w (_I)eiX]e-[{o2-t2)1/2/21x
4(62 _ r2)1/2 0 0
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uniformly for x as [) -> O. A similar calculation for x < 0 gives the combined result for all x

g(x) ~ 1 [w (l)e- ix +w (_I)eiX]e-[(<l2-t21112/2Jlx!
4([)2_ r 2)1/2 a a

from which the expression (21) for the integral (20) was written.

(Receired 22 December 1969)

A6cTpaKT~l1CCJlC).\YCTCll pa3HbIMH MCTo).\aMH no rcpll YCTOHYHBOCTH MOnCJlH KOHCTPYKlIHH YYBCTBHTCJlbHOH.

K HCnpaBI1J1bHOCTllM ).\Jlll pa3HblX CJlyyaCB nCTCpMI1HHCTHYCCKHX H CTOXaCTHYCCKHX HayaJlbHblX Hcnpa

BHJlbllOCTCU PaCCMaTpl1BaCMall KOHCTpyKUHlI npCnCTaBJllICT C060H 6CCKOHCYHYl{) ).\JlHHHyl{) KOJlOHHY Ha

"pa3MllPlcHHOM" HCJlI1HCHHOM ynpyrOM OCHOBaHI1H. I1cnoJlb3Yl{)TClI MCTO).\bI pa3J10JKCH1111 no B03MY

lllCHI111M !3aKJll{)yall ").\BYBPCMCHHOC' MHOJKCCTBO!, 3KBHBaJlCHTHOil JII1HCapH3aUHH H oT6paCblBaHHlI no

HCpapXI1H YJlCHOB B npI16J1I1JKCHl1l1X. Bo BCCX cJlyyallX I1WCTClI aCI1MnTOTHYCCKHC pC1YllbnnbI, j]JllI MaJlbrX

lHaYCHI1H HCnpaBI1J1bHOCTCH H CpaBHI1Bal{)TClI 3q,q,CKTbI ,anll palHblX HX KnaCCOB.


